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We show how various known results concerning the Barnes multiple zeta and
gamma functions can be obtained as specializations of simple features shared by a
quite extensive class of functions. The pertinent functions involve Laplace trans-
forms. and their asymptotics is obtained by exploiting this. We also demonstrate
how Barnes” multiple zeta and gamma functions fit into a recently developed theory
of minimal solutions to first order analytic difference equations. Both of these new
approaches to the Barnes functions give rise to novel integral representations.
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1. INTRODUCTION

In an impressive series of papers [ 1-4] culminating in Ref [5], Barnes
developed a comprehensive theory for a new class of special functions, the
so-called multiple zeta and gamma functions. Barnes’ multiple zeta function
Inlssw|ay, .y ay) depends on parameters «, .., ay that will be taken
positive throughout this paper. It may be defined by the series

NS W dy, e ay)

e
= 3y (w+mya,+ - +myay) ™ Rew>0, Res> N, (1.1)
mip, ...my=0
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108 S. N. M. RUIJSENAARS
from which the recurrence relation

Cprmtlso W dproy L dys ety )
~CprptS Wl dywndpr )= = Car (SO0 [ dyy oy dyy) (1.2)

is immediate (with {o(s, ) =w %),

Barnes showed that {, has a meromorphic continuation in s, with simple
poles only at s=1, .., N, and defined his multiple gamma function "8 ()
in terms of the s-derivative at s =0, which we will write

Pl | dyy e dpy) =0 psa 0w |ty ooy dp)]smp- (1.3)
Clearly, analytic continuation of (1.2) yields the recurrence

Vet O+ dprr ey e dpriy)
~ W dys ey o)== (0 Ly s ) (1.4)

with ¥y(iw)= —In w.

Up to inessential factors, the functions ¢, and ¥, are equal to the
Hurwitz zeta function and the logarithm of Euler's gamma function (cf.
e.g., Ref. [6]). For a; =u, =1, the function

S,0n | ay as)=exp(¥ala, +ay—w | ay. as) — Walw | uy,ay))  (1.5)

was already studied by Holder in 1886 [7]. It was called the double sine
function by Kurokawa. More generally, Kurokawa considered multiple
sine functions defined in terms of ¥ (), relating these functions to Selberg
zeta functions and determinants of Laplacians occurring in symmetric
space theory [8-10]. (See Refs. [11-13] for earlier work in this direction.)

Barnes’ multiple zeta and gamma functions were also encountered by
Shintani within the context of analytic number theory [ 14, 15]. In recent
years, they showed up in the form factor program for integrable field
theories [ 16, 17] and in studies of XXZ model correlation functions [18].
See also recent papers by Nishizawa and Ueno [ 19-21], where ¢g-analogs
of the multiple gamma functions are studied.

In our lectures on Calogero-Moser type systems [22] we introduced a
function that is substantially equal to the double sine function (1.5). We
dubbed it the hyperbolic gamma function, for reasons made clear in our
paper Ref. [23]. (Only recently we became aware of the connections to the
previous work by Barnes, Shintani and Kurokawa, as detailed in
Appendix A of Ref. [24].) From the viewpoint expounded in Ref. [23], the
hyperbolic gamma function (alias double sine function) is a solution to a
first order analytic difference equation with properties that render it
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unique. Informally, these properties amount to its having the maximal
analyticity and mildest increase at infinity that is compatible with the dif-
ference equation.

As it turns out, the theory of first order analytic difference equations
developed in Ref [23] naturally applies to Barnes’ multiple zeta and
gamma functions. (In Appendix A of Ref [23] we already detailed how
Euler’s gamma function fits in.) Indeed, a principal goal of this paper is to
make clear in what sense {,,,, and ¥,,,, may be viewed as the simplest
solution to the equations (1.2) and (1.4), interpreted as analytic difference
equations for unknown functions, with the right-hand sides {,, and ¥,,
being regarded as explicitly given functions. (In fact, Barnes used this
expression, without going beyond an intuitive notion of simplicity. )

Within our framework, the idea of the simplest solution is replaced by
the precisely defined concept of a minimal solution. We have summarized
the pertinent results from Ref. [23] in Appendix A, where we also present
two new results (Theorems A.2 and A.3) that are relevant in the present
setting. The application to the special difference equations (1.2) and (1.4)
is studied in Section 4. (Accordingly, the reader is advised to glance at
Appendix A before reading Section 4.) It leads to useful new representa-

tions for {, and ¥,, of which we mention specifically the remarkable
formula

N
(:N<s, Z a_,-/2+w>

j=1

N

s —2 . N N-—-x
- (H M> (w_,- 5 \> by odve. (L6)
RN

2 .
ne1 2ayls—n) g

of. (4.13). Indeed, it is immediate from this representation that Cy admits a
meromorphic continuation in s, with simple poles for s =1, ... N, and the
s-derivative at s =0 can be readily calculated from this formula as well.
As his main tool to handle s-continuation and derive large-w
asymptotics, Barnes [5] employed a representation ir} terms of contour
integrals, generalizing the Hankel integral representation 'tor the gamma
function (see, e.g., Ref. [6]). A second goal of this paper is to shm\" Vhow
these aspects can be quite easily dealt with for a very general class of func-
tions, using Laplace transforms as the main tool. fBz}rnes’ au'gu.mel.lts _vmld-.
ing the large-w asymptotics (cf. Section 57 in Ref. [5]) are quite mvol\\'cd‘.
Shintani’s Proposition 4 in Ref. [ 14] dealing with the double gamma func-
tion does not simplify matters either.) o )
Section 2 is devoted to this general setup. It is quite mdependem of
the difference equation theory in Appendix A, and leads to representations
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that are different from the formulas arising in the difference equation
framework. On the other hand, we have occasion to invoke a general result
on the asymptotics of certain Laplace transforms, which we arrived at and
applied in the difference equation context of Ref. [23]. Save for this result
(Theorem B.1 in Ref. [23]), Section 2 is self-contained and quite elemen-
tary, involving solely some well-known properties of Euler’s gamma
function.

In Section 3 we focus attention on the special functions that yield the
Barnes zeta and gamma functions. Thus we quickly arrive at a substantial
part of the results obtained by Barnes. (In particular, almost all of the for-
mulas in the Jimbo-Miwa summary on Barnes’ functions arise in this way,
cf. Appendix A in Ref. [18].) Moreover, we are led to new representations
that are quite different from the Hankel type representations occurring in
Barnes’ papers and later work.

The difference equation viewpoint explained in Section 4 (and the alter-
native representations to which it leads) might be exploited to quickly
reobtain some other results due to Barnes. In particular, his transformation
theory (cf. Sections 45-48 in Ref. [5]) may be arrived at by taking the
general addition formula (A.9) as a starting point. But the main purpose of
this paper is to present a concise and largely self-contained account of
some highlights among Barnes’ results, supplying in the process novel
representations and the minimal solution interpretation that may be useful
for further studies and applications of the Barnes functions.

2. GENERALIZED BARNES FUNCTIONS

Let f(7) be a continuous function on [0, %) with at worst polynomial
growth as 7— . Choosing In ¢ real on (0, ), we begin by studying the
integral (Mellin-Laplace transform)

i

Texp(:lnt—wt){/'(t)EF(:, . (2.1)

Y0
It is easily verified that F(z, w) is a well-defined analytic function for

(zxw)e{Rez>0} x {Rew >0}, (

19
i

which satisfies

0. Flz,w)=—F(z+ 1, w). (

[
™)
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From now on we assume that there exist x, e C. ke N, such that for all
leN one has

! k

. Ayl
=Y —2_|-=0(z’+'). 110. (2.4)

k=0
This enables us to associate Bernoulli-like polynomials with the function /.

as follows:

n }’
Bux)= Y </‘>oc,\..\"""} neN. (

k=0

1o
'

Indeed, this definition entails the Bernoulli type features
a,=A00), A (X)=(+1)4(x). VieN. (2.6

We are now prepared for our first proposition.

PROPOSITION 2.1.  Fixing w with Rew >0, the function g (2)= F(z w)

S

extends to a function that is holomorphic for z¢ —N. For == —n, ne N, the

function ¢,(2) has a simple pole with residue A, —w)nl.

Proof.  We have
T e e A 1} (2.7

Fixing M € N, we therefore obtain

M ) 5 M ’ Koy
Flz,w)= Z i.A'—w":""F(:+/cH—’ %r:e""’<_/"(1)~ f'\_ﬁ) (2.8)
0

-1
k:()/" k=0 k!

Now the term in brackets is O(+**!) for 1] 0, so the integral yields a func-
tion that is analytic for Re 2> — M — 1. The remaining terms have simple
poles for =+ ke — N. Therefore it remains to verify the residue assertion.
To this end we need only recall that the residue of the function I'(s) at its
pole s = —n1 is given by (—)"/m!. |

We proceed by associating a generalized multiple zeta function with the
function f:

Zylsow)=Fls—Now)/T(s). (2.9)
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Fixing M = N. we obtain from (2.8) the representation

SRR
Lylsow)= > St vk
k! P
el 5, ) kN 1
LD SRR IR
k=N+1 k! It
] o ll[ y . . \, 'X/\-Ik\
e — e ( (1) NOZAL . )
I.(-V)J() ! ‘ / /‘yu k! ) (2.1

PROPOSITION 2.2, For fixed w with Rew =0 the function Zyls, )
holomorphic: for s¢ 1. N =2y and for fived s with s¢.P, it
holomorphic in Rew = 0. It satisfics

O Ztsow) =0 Mty + s+ M 1) Zyls + Mo, M e N*

(2.1
and
. m!
Zylemoawy={ " Byl WL nre . (2.1
' (N +m)!
Ar s je A it has a simple pole with residue
P ! Ay W) je vl LN (2.1
S R N T N ' :

Proof. Clearly, (2111 follows from (2.3) and (2.9, The remaining asse
tions follow from (2.9) and Prop. 2.1. (Alternatively. they can be deduc
directly from the representation (2,100, J

Next, we introduce o function
Lylwi=0 Zusowil, . (2.1

which may be viewed as the logarithm of a generalized multiple gamn
function assoctated with /. From (2,101 we obtain the representation

N N b Nk
IR \ Tyl ’N) AN ! Inw
o KON R =
M 5
i L A’ WM AN T Ry (2.1
kN /‘.’
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where
. (/[ ) ) i M .fk\
Ry ()= —r*“e""'(ﬂr)» L) M=N.  (216)
Jooo o . k=0 k)

Moreover, from (2.11) we deduce
OM L)y =(— )M (M~ 1) Z (M. w). M=N+1. (2.17)

From now on we assume f(7) 1s analytic for Re r >0 and at 1 =0. Thus
we have

a, = [%A0) (2.18)
and there exists 0 >0 such that
) ) e [Il .
Jyer=Y% ”—'.yf,,(.\m lt] <. (2.19)
n=40 :

Moreover, we assume that for all keN,e>0 and ye[0.72) one has
bounds

Lf 9oy <o, e Vi g)ye[0. 2 ) x [ —z. 7], (2.20)
where ¢, () is a positive non-decreasing function on [0, 7.2).

PROPOSITION 2.3, Fixing M= N. the function Ry, (w) has un analyiic
continuation to

C =C\(=x%.0]. (2.21)

Fixing ¢ >0, y € [0, n/2) and K> ¢. one hus

eM=VR, ()| < Cly(K—e)"' YweSk,. (2.22)
where
Sk,= |J {Rele"w) =K}, (2.23)
lbl <x

and where C(y) is a positive non-decreasing function on [0, 7 2) (Fig. 1).

Proof. Consider the function

k
.fmr)sz“N*‘(f'(r)— —/\—‘—> (2.24)
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K, %

FIG. 1. The regon 5,

At =00t s analvtic and has a zero of order
integrate by parts A7 N times in the representation

Rytwy= | dee 7t Ren

bl

-0,

to obtain

Rygtwy w™ Yo dre

“

it

M oN Thus,

W adan

(2.20)
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where we have set

hiy=f5" ). (2.27)

Now the function /i(¢) is analytic for Re />0 and at r=0. Moreover. in
view of the bounds (2.20) it satisfies for all >0 and y€[0.72) a bound
of the form

h(re®)| < Coli) e, Y ¢ e[0. x)x[ =7 7] (2.28)
Thus the assertion follows from Theorem B.l in Ref. [23]. |

As an obvious corollary, we deduce that Ly(w) has a holomorphic
extension to C~. The representation (2.15). combined with the bound
(2.22), now yields an asymptotic expansion that is uniform as |w| — x in
sectorial regions |arg w| <z —d, 0 >0. To illustrate why this is the case, we
have added Fig. 1, which depicts the geometric state of affairs.

Next, we point out that when /{f) satisfies the above assumptions, so
does

fAn=e 1), Re d > 0. (2.29)

Specifically, f,(r) is analytic for Re7>0 and at r=0. and /,(1) obeys the
bounds (2.20). Moreover, we may take ¢=0 in the latter and hence in
(2.22), too. Of course, the functions Zy ,(s, w) and Ly ,(w) associated to
1., fulfil

ZN.LI'(‘\‘* W) =ZN(.\', \l'+l/), LN.d(H'):LN‘ W"’“(/L (23(”

but it should be stressed that these relations are not manifest from the
above representations for Zy , and Ly 4.

A quite simple, yet illuminating example illustrating the latter remark
and the above constructions is obtained by taking f(7)=1. Obviously. /
satisfies all assumptions, and (2.15) yields

L (\')—(—j‘—l‘ﬁ<§l—lnw> (ftry=1). (2.31)
VETETN AT -

The Bernoulli polynomials associated to fay=e¢ " are given by‘
A(x)=(x —d)", cf.(2.19). Taking M =N in the representation (2.15) of
Ly 4w), we obtain the identity
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e N N 1
( “N‘ ) < Z ; (w +(l) V' (—w—d)"Iny
/=1 !
(—d)*(—w)N=k N2k
i EO KUN — i)t ,; /
) G (e § oy
o 1 K=o KU )7
(2.32)
Now when we write
~
-T]\T!( )Y Inw=—— ( —a’)NJO 7 (¢e7 "=~ (2.33)

on the rhs of (2.32), we obtain the w | 0 limit

dt N (—=dry (—dt)yV (—d) |
Jy ;m—l((’ dr_ Z —;’*—"“*Nl ¢ ,>—T< Z -'-Illt/)

i=0 /=1

JJ

(2.34)

where Re d > 0.

To conclude this section, we point out that the integral we have Just
derived can be exploited to rewrite Ly(w) (2.15) as a single integral.
Indeed, taking M = N in (2.15) and using (2.34) with = w, N > N — k. we
obtain the integral representation

Lylw)=

tn

o dr e NSt et
il ™= Y =g (—w)— Al =) ). (23
A (( () ng() ol 'l ) N I )) (

(Recall (2.19) in order to appreciate the integrand.)

BARNES' MULTIPLE ZETA AND GAMMA FUNCTIONS

In order to specialize the above to the Barnes functions, we need to
choose a function / that depends on the integer N we have fixed in the
previous section. Specifically, we need the choice

N

SO=" T (L—=em) = Gy ay e (0, 7). (3.1)

J=1

Clearly. this function satisfies all of our assumptions in Section 2: It is poly-
nomially bounded for 77 » | analytic for Re r> 0 and at 1 =0, and it obeys
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the bounds (2.20). We denote Z, and L, with this choice of f by { (s, w)
and ¥ y(w).
Accordingly, the (Barnes) multiple zeta function reads (cf. (2.9))

(g " ) 1 e (/f et ﬁ (1 —a;ry—1 N 32
e A.’ 1 — —_— — e — Y N R Ay N R ’ () Dl
QN 1 (.\') 0 j=1 ‘ ) es> e w > ( )

It can be rewritten as a power series by using

o0

N
[T(l=e ) "'= % expl—tma,+ - +myay)) (3.3

J=1 mi, ..,my=0

and the integral (2.7) (with /=0). This yields the formula

[

Ll w) = Z (wHmypa+ - Fmpyuy) Res> N, Rew >0,

my, ., my =0

(3.4)

mentioned in the Introduction, which is used as a starting point by Barnes [5].

In order to relate the Bernoulli-type polynomials .4, (x) associated with
f(3.1) (cf. (2.4) and (2.5)) to the so-called multiple Bernoulli polynomials
By .(x) defined by

[N()\I "
— N (3.5)
l—l./N=l (Ua// - l ) nz() N
we exploit the identity (cf. (2.19))
2 ( l)” . ,N()u
£ =fl—te= 3.6)
n;, n! il / )e j/.v=l (¢“"—1) (
Indeed, a comparison yields
Bx)= ()" By o = X), 2, =(—)" By ,(0) (3.7)
Correspondingly, the general formula (2.10) specializes to
N
(5, ) Z BNk (0)whN—*=k n
= : (=173 _[
Mok k—N-1
+ Y 7 Buk0) W (s D
k=N+1 N /=0
! di A () K—N
+ = t'e "“’< eTn T — By (0)1
I'(s) L, 1 /Ul ,z(, ki T

(3.8)
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where M = N and Re s> N— M — 1. Moreover, from Prop. 2.2 we deduce
that (s, w) has a meromorphic extension with simple poles at se .4,
whose residues read

(=" ‘ .- ‘
'."z(j—l)!(N——j)!BN’N“’/(HL Jeil . N (3.9)
The values at s = —m, me N, are given by
(—)¥m!

Cnl=mw) = NN m),s meN, (3.10)

(N—+m)!

and (2.11) yields

M1
AM sy = (=)™ ] (s+j)-Cyls+ M), MeN*  (3.11)

j=0

Turning next to the function
Pplw) =0, Cnlss w)lsmo (3.12)

associated with f'(3.1), the representation (2.15) yields

: (=" , . N = BN,/\-(O)H'N#" Nk
.{/N(”)zTBN,N(”)ln“+('_) k;)w I; :
M (__)k
£ Y B0 R k= N = D Ry n) (313)

k=N+1
with
NS lr N M K
Ry arlir) = ‘ (mc““" ( H (I—e =t —% (—)BN.k(O)kaN>.
o ! j=1 K=o K!

(3.14)

where M >N and Rew>0. From Prop. 2.3 it follows that ¥y(in) has a
holomorphic extension to C~ (2.21), and that the remainder in (3.13)
satisties

Ry prlwy=00e"=M=1 |yl —» ., larg w| <, (3.15)

where the bound is uniform for |argw|< 7 —d, d>0. Moreover, (2.17)
yields

CMMow)y = (=M aMy w) /(M — 1), M>=N+1, (316
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and the integral representation (2.35) becomes

~ N
Yyln) = a (e“"’ I1 —L

Jo ! -1 l_("'"l'

J

N N—l(_[)u (_)N
—t > By ,(n)— i c"BN_N(n')>. (3.17)

Al
n=20 n

To proceed, we introduce the multiple gamma function
In(w) =exp( ¥ y(n)) =exp(a,{pls, 1w, —o). (3.18)

(It should be pointed out that the multiple gamma function I“f,( w) defined
by Barnes is slightly different: One has

Ty =T50w)/p . (3.19)

where p, is Barnes” modular constant. Our definition is in accord with
most of the later literature.) Then the recurrence (1.4) entails

oyl dy, e dpriy)

=000 dy, e tpg) Dpga i OV gy Ly e gy i) Me N,
(3.20)

with 7'g(w) = 1/,

Next, we recall that ¥,,, ,(w) has an analytic continuation to C~ (2.21).
Therefore, Iy, () has an analytic continuation to C . too, and has no
zeros in C 7. The analytic character of "y, (w) for we (— 3, 0] can now
be obtained by exploiting (3.20).

Specifically, taking first M =0, one can iterate (3.20) to get

1—1 1

Iiowap) =]

fo WK

L O ay | ay), le N*, (3.21)

From this one reads off that /7,(w|«,) has a meromorphic extension
without zeros and with simple poles for we —aN. Writing next

11
Dywlay,ay) =[] Iyv+kay Lay)- Dylw+lay [ay,az), TeNF(3.22)
k=0

one deduces that I'y(w | a, . ¢5) has a meromorphic extension withogpzeros\
and with poles for w= —(k,ua, +kyus), ki ky € N. The multiplicity of
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a pole 1w, equals the number of distinct pairs (k. k,) such that
wo= —(kyu, +kya,). (In particular, all poles are simple when dyid5 18 irry-
tional.)

Proceeding recursively, it is now clear that y(w) has a meromorphic
extension, without zeros and with poles for w= —(hya, + -+
kyay) k... kyeN. It should be observed that the relations (3.16)
between (M, w) (written as the series (3.4)) and the logarithmic
derivatives of I"y(w) are in agreement with these conclusions (though they
do not imply them). It should also be noted that the pole of I” vor)yatw=0
is simple. Denoting its residue by Ry, Barnes’ constant py in (3.19) is (by
definition) equal to Ry"'. (Thus one has wI'5(1w) -1 as w—0.) ’

To conclude this section, let us consider the N =1 case. From (3.4) we
have

Crls,w ay=a=*(s, wiu). (

\ %)
(8]
L)

where {(s, w) 1s the Hurwitz zeta function. Also, (3.13) specializes to

w1 v E (=) (wa) B,
ll]f,()l‘lll)Z(;—;>l ”_” Z k(k—1)

e d L M (—wip
+| Y QL (——\)—‘~—" . (324)
0 k!

I—e k=0

where M >1 and Rew>0, and where B, are the Bernoulli numbers.
defined by

|
gl
|
%
L
"™
19
thn

Moreover, the integral representation (3.17) can be written as

.o , s l , = 2¥(wia —1/2)
(e LT

oy \\u 2 2y 2shy

InIi(wla)=

Thus we have (see, e.g., Eq. (A37) in Ref. [23]. with = > w/a—1/2)

(98]
19
-~

(w [ a)=exp((w/a—1/2)Ina) Fiwja)(2m) =2 (

Finally, we point out that the asymptotics associated with (3.24) amounts
to the Stirling series.
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4. THE DIFFERENCE EQUATION PERSPECTIVE

We proceed by relating the recurrence relations (1.2) and (1.4) to the
general theory of first order analytic difference equations expounded in
Appendix A. In this way we obtain simultancously some illuminating
illustrations of this theory and new representations for the pertinent func-
tions. The first question to answer is obviously: In what sense—if any—can
{y and ¥ be viewed as minimal solutions to difference equations of the
form (A.1)?

Comparing (1.2) and (1.4) to (A.1), it is clear that the role of the func-
tion ¢ in (A.1) should be played by {,, and ¥,,. resp., and «a,,,, should
be viewed as the step size «. We also need a strip |Im z| < ¢ in which ¢(z)
is analytic. Beginning with {,,, ., let us first define a number

N
Ay=3> ua,.  NeN (4.1)
j=1
(with 4, =0). Consider now the function
Gar () =Caplsy Apy+d +i2), d> —A,,, (4.2)

where we choose at first Re s> M. Because we choose the displacement
parameter « greater than —A,,, we obtain a non-empty strip |Im z| <
A+ d in which ¢, (2) is defined and analytic. Thus we can use (3.2) to
write

(/)M “( )_—’- " ) | ’[/" VM . -0 l'.}" RCS> M, llTl :<AM‘+‘([.
" A 0 ’
(4.-;)

Let us now study ¢, () with regard to the conditions (A.5) of
Theorem A.1. The Fourier transform ¢ . o( 1) (A4) can be read off from
(4.3). 1t is manifestly in L'(R) and it satisfies ¢, (y)=0(y) for y—0,
provided Res=M +2. To ensure ¢, (v)el'(R) we must require
Re s > M + 1. (Indeced, this can be readily deduced from the series represen-
tation (3.4) for ¢, ,.)

Choosing Re s = M + 2, then, Theorem A.1 applies and so we obtain a
minimal solution

b Mo, (71,)x — 1 e 2dy
o fdpg s 2) = dy
0

I'(s) l ["[MJ"’ sh(a,p) .

j=1

=S Apy Hd+iz), ReszM+2 Imz< Ay, +d
(4.4)
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to the analytic difference equation

flotidn e /2) = flz—idp 1 2= (2), ResZ M+ 2 Imz< 4, +d.
(4.5)

In words, {,,,, may be viewed as the unique minimal solution given by
Theorem A.1, provided Re s> M + 2.
Next, we consider general s-values. From (3.11) we deduce

K a2 =(=0" T] 5+ ))-barsenl2) keN* (4.6)

Thus, fixing s, with sy #1,.., M+ 1, and choosing k, such that
Re sy + ko= M+2, it follows trom the paragraph containing (A.22) that
the difference equation (4.5) admits minimal solutions. Recalling the
representation (3.8), it readily follows that {,, . (8¢, Apry +d +iz) is poly-
nomially bounded in the strip [Im z| <u,,, /2, so that it is once again a
minimal solution to (4.5). From (A.23) we then obtain the representation
(with N=M +1)

& (iz)/
:N(SO» AN+‘[+i:): ’}""" !
j=0 J
f)l— J. x M(U—ZI_)r:_k()z——l.(__:M> (4 7)
F(\o H/—l sh(u;y) Jj=0 J , |

which holds for sy # 1, .., N,Resg+ ko> N and Im -z < A+ d.

Now since Res,+Aky,>N, we are entitled to evaluate the k,-fold
c-derivative of (4.7) by differentiating k, times under the integral sign.
From the resulting formula it is readily deduced that the highest coefficient
Fr,. s, vanishes. (Indeed, this follows for instance by comparison with the
ky-fold derivative of (4.4).) Also, the coefficients r;, j=0, .., k — 1, in (A.23)
cannot readily be expressed in terms of »(z), but they are clearly equal to
¢YNu; 0). Thus we have

Figo 5o = 0, Fraw=00C o, Ay +d),  j=0,..ko—1 (48)
in (4.7). It should be noted that the resulting formula can also be directly
inferred from (4.4) and analytic continuation in .

Turning to the difference equation (1.4) obeyed by ¥,, . . let us consider

the function

Parl ) =W (A +d+iz), d> —A,,. (4.9)
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Just as ¢,y (2) (4.2), it is defined and analytic in the non-empty strip
[Im z| < A, +d. But it is clear from (3.13) that ¢(2) does not satisfy the
assumptions of Theorem A.1.

On the other hand, it follows from (3.16) that one has

O 2P () = (=DM 2 (M4 1)y 4l ). (4.10)

As we have established above, the rhs satisfies the assumptions of
Theorem A.1, so that ¢,,(z) yields an analytic difference equation admit-
ting minimal solutions. Now it is clear from (3.13) that PrroilApy o+
d+iz) is polynomially bounded for |[Im | Sdyre1/2. 80 0t gives rise to a
minimal solution. Thus we may invoke the general formula (A.23) (using
(4.3) with s = M +2) to deduce the representation (with N = A + | )

N -
Vil Ay +d+in = Y (04 Wl Ay +d) L
J=0 ¥
R R P T 1)
+2-N D¢ e W>
o ¥ I—I,}LI sh(a;) K( /ZU K /

(4.11)

where we may choose Im z< A, +d. (Just as for (4.7). the highest coef-
ficient is readily seen to vanish.)

[t should be noted that we used uniqueness of minimal solutions to
arrive at this representation. Alternatively, however. it may be derived
directly from (4.7) and (4.8) by using that ¥ (i) equals (by definition) the
s-derivative of (s, w) at s=0.

Quite different-looking representations may be obtained by exploiting
the formula (A.7) with ¢(z) given by ¢,, (2) (42) and Res > M +2. (Note
in this connection that this s-restriction entails not only that ¢,, (z)
satisfies the assumptions of Theorem A.1. but also those of Theorem A.2.
with ¢ chosen equal to Ay, +d.) Changing variables, it yields

. 1 . o
S Ay Fd+in)=—— dx (s, ¢+ iz—ix) th
2y Y Aar 41

(4.12)

AW

where ¢ = A4, +  and where we may take Im = < ¢. Clearly, we can iterate this
relation, but before doing so it is expedient to integrate by parts (recall (3.11)):
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Cols, Ay +d+iz)

b4 | d . . : 2
- I dxJn by Lody v d vz iy ety gy
2(/;\, N l s
N o , A N
. YomchT o (nx, a,) . I \ :
- | < AT Jlawiz 0 X A A
Jey \ L 2ty ) ) wor

¢

(Here, we used (y(s.w)=w""in the last iteration step.) As it stands, this
new representation is valid for Res >N and Im =« But it is plain by
inspection that it extends analytically to arbitrary s+ 1. ... N. Morcover,
the v;-contour may be shifted up by », e (0. «, 21 to enlarge the half plane
to Im =z <d+x;: more generally, (4.13) can be adjusted so that it holds for
a given z, with Im =y < Ay + .

[t 15 of interest to point out that (4.13) vields an alternative route to an
explicit determination of (y( iy o o 40y tor me 0 CIndeed, we also have
(3.10) available.) The point is that for s = the integrand in (4137 is a
polynomial in x, ... v, so that the integrals can be done by using

n

dy o= R 20 R B, koot (4.14)
20, 7 chony

where By, are the Bernoulli numbers given by (3.25),
(A short proof of the (knowny result (414 reads as tollows, Denoting
the ths by [, the elementary Fourier transtorm

o Cos Ay \ i
| dy 3 (4.15)
20, ch”my 2shiv 2y
entails
.\.‘,\ ’, ( ’/\ .
. l A b v (4.106)
¢ b=, 12k
But we may also write (¢ (3,257
\( 2 \ v l' \n
T A (20 R, 417
¢ oer b e Lot

so that (4.14) follows upon comparing (4,167 and (4171
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From (4.13) we can now quickly obtain the corresponding representa-
tion of ¥y(Ay+ +d+iz), by taking the s-derivative at s =0. This vields

N
. o,
Yo(Ay+d+iz)=Y 7 N0 A+ d + i)
I=1
N ; \
s [.\- \
+(_)N+l< T Uy v 11%
"EII 2na? J_ L ch3(nx,, u,,)/) Iut). (4.18)
where the integrand reads
N N N
IN(.\‘)=<(/+i:—i Y .\',,) In <d+1’:~i Y .\',,>. (4.19)
n=1 n=1 /

{As before, the restriction Im:<d can be relaxed by suitable contour
shifts.)

APPENDIX A

A. First Order Difference Equations

This appendix is concerned with analytic difference equations (hence-
forth A4Es) of the form

flz+ia/2)— f(z—ia/2) = d(2). (A1)

Here. we have « (0, » ) and ¢(=) is a function that is analytic in a strip
lIm =| < ¢, ¢ >0, around the real axis. We call a function f(z) a minimal
solution to the AAE (A.1) when it has the following properties:

(i) f(z) is analytic in the strip [Im z| <c¢+a/2:
(ii) f(z) satisfies (A.1) in the strip [Im [ <c:
(iii) f(z) is polynomially bounded in the strip [Im z[ <« 2.

It would be useful to have necessary and sufficient conditions on ¢(=) for
minimal solutions to exist, but we are not aware of such conditions. Befort
turning to conditions that are sufficient for existence. it is important to
appreciate why minimal solutions are unique up to a constant, whenever

they exist.
To this end, consider the difference

diz)=filz) = fal2) (A2)
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of two minimal solutions. It is analytic in |Im =] < ¢+ ¢/2 and polynomially
bounded in |Im z| < a/2. Since it also satisfies

d(z+ia/2)=d(z —iaj2), [Im z] < ¢, (A3)

it has an analytic continuation to an entire iu-periodic function. Poly
mial boundedness now entails that d(z) is constant.

As concerns necessary conditions, it is clear from (ii) and (iii) that
$(x), xe R, must be polynomially bounded as x — + 0. Thus #(x) defines
a tempered distribution. As such, it admits a Fourier transform in the dis-
tributional sense. The following theorem provides sufficient conditions

guaranteeing in particular that the Fourier transform

no-

. [ =
fi=s- | dvitx)e (A4)
2nJ_ o
exists in the classical sense and yields a continuous function,

THEOREM ALl Assuming ¢(z) satisfies
$eLYR),  dyp)eLl(RL  d(y)=0(y). y—0, (A3)

the AAE (A.1) udmits minimal solutions. In particular, there exists a minimal
solution f(a; =) explicitly given by

oo 7 2 )
fluz) = ‘ dy (_/)(_\_) o307, [Im z| < a2 (A.6)
Yo * shay
or by
. 1 = n
flayz)=-— du ¢(u) th = (z —u), [Im =] < a/2. (A7)
2iaJ_ o a

This function is bounded for |Im =z| <a/2, and satisfies

lim  f(a;x+it)=0, tel —a/2,a/2]. (A.8)

X = 4o

Moreover, the following addition formula holds true:

fu ko iu ) a
A/(;u): >/ (Cl’“+5/; (k+1 *2]))» [Im =] < ¢ +2—/\j. (A9)

Proof. See Theorem I1.2 in Ref. [23] and its proof.
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We continue by presenting another set of sufficient conditions on ¢(z)
that does not involve Fourier transforms. These conditions may be more
easily checked in concrete applications.

THEOREM A2, Assume $(z) is bounded in closed substrips of |Im z| <¢
and satisfies

lim ¢(x+ir)=0,  Px+inel'(R,dx) (A.10)

X — + 0

for all te(—c,c). Then the AAE (A1) admits minimal solutions. In par-
ticular, there exists a minimal solution f(a; =) explicitly given by (A.T). This
function is bounded in closed substrips of |Im z| < ¢ +a/2 and satisfies

1

im  f(a; x+it)=+

X = +w

- J du plu), te(—c—ua/2, c+a/2). (A.11)
il _o

18]

Moreovver, the addition formula (A.9) holds true.

Proof. Define a function f(z) by the rhs of (A.7). Since ¢(x)€ LYR),
this function is well defined and analytic for |Im z| <«/2. Next, fixing =
with Im z € (—a/2, a/2), we may shift contours to obtain

el

du (/)(u+if)[hz(:—u—ir)ﬁ (A.12)
2ia I~ 7

provided ¢ satisfies re(—c¢,¢) and Imz—re( —a/2, a/2). (This readily
follows from the assumptions and Cauchy’s theorem.)

We can now exploit (A.21) to deduce that (=) has an analytic continua-
tion to |Im z| < ¢+ «/2, once more given by (A.12), where 7 is such that
Imz—te(—a/2, a/2) and t€(—c, ). From this formula one readily sees
that f(z) is bounded in closed substrips of |[Imz|<¢+a?2 and obeys
(A.11).

We)proceed by proving that f(z) satisfies the A4E (A.1). To this end we
fix z with Im =€ (—c, ¢) and choose 1, satisfying

t, €lmz+(0, a), f_elmz+(—a 0), 1y €(—¢ 0 (A1)

Then we may write

] o0 ia .
f<:+ '—(—1>=L{ (/zu/)(u—{—iii)th%(:_-t -;—u—lti) (A.14)

2iaJ— =
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From this we obtain

./‘(—+ii’>,__‘/' <:—Mfﬂ>:l‘* " du plu+it, )cth%(:~(u+n % )>

ia d -,

1 . n
- duluit )cth~(z—(u+it )). (AlS5)
Yoo u -
Let us now view the rhs as a contour integral

Ly pw) cth = )
—_— wp(w) cth—(z—w),
Ziaq‘( a : (A.16)

where [ is depicted in Fig. 2. Then Cauchy’s theorem may be invoked to
deduce that the integral equals —27zi times the residue at the simple pole
w==. Thus the rhs of (A.15) equals ¢(z).

It remains to show that the addition formula (A.9) holds true. Now it is
clear that the function on the rhs satisfies the A4E (A.1) with « replaced
by a/k. Since it is also a minimal solution with the same limit for x - »
as

.

S —i nk
J K/\""\ mliuJ / du dpu) th - (x =), (A7)

it must be equal to f(«/k; =), by virtue of uniqueness. §

-
=7
-
w=X+it _

FIG. 2. The contour /7 in the w-plane.
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When ¢(z) is such that minimal solutions to (A.1) exist. it is not clear
that the derivative ¢'(z) gives rise to an AAE admitting minimal solutions.
too. Of course, when f(z) is a minimal solution to (A.1), it is immediate
that /(=) solves (A.l1) with ¢ — ¢', but the point is that the property (iii)
may not hold. (Cauchy’s integral formula entails f’(z) is polyno{‘niallv
bounded in strips Imze [ —a/2 +¢ «/2—¢].e>0. but the bound migl{t
diverge as ¢]0.)

By contrast, it is easy to see that primitives of ¢(z) do give rise to A1Es
admitting minimal solutions. Indeed, let

n'(z)=d¢(z), [Im z] <e¢, (A.18)

and let f(z) be a minimal solution to (A.1). Setting

() E)':-l—J- dw fw), {A.19)
0

we now choose r such that the function

vz a2
iar + dw fiw) {A20)
z—iaj2
equals 7(z). Thus g(2) fulfils
glz+ia/2y —glz—ia2)=nlz). [Im =] <« (A2

and is obviously a minimal solution to this AJE.
Of course, this construction can be repeated to handle right-hand side
functions 5(z) satisfying

Rz = (=), ke N¥, [Im z| <c. (A.22)

To be specific, when ¢(=) fulfils the assumptions (A.5) of Theorem A.1. one
arrives at minimal solutions to (A.21) given by

ko on ax ViRt
Fiz (/5(.—_1) ey —k
)= L (—2iv)
gla; 2) ;L:o f +‘ " o .
k=1 Yiv-)d
i (—2iyz) _ 1
. (w—’»-— y = ) Mmoo <al (A23)
j=0 g /

where r, ... r, are uniquely determined. Indeed. it is clear that the k-fold
derivative of the rhs equals ry + f(a: 2), s0 that gla= =) satisfies the A-fold
derivative of (A.21). The coeflicients ry. ../ are then determined recur-
sively as described in the previous paragraph. (See also Theorem 113 mn
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Ref. [23].) Note one has r;= g"//(a; 0) for j=0,...k — I, but we have no
formula expressing r; and r, directly in terms of #(z).

Assume next (A.22) holds and ¢(z) satisfies the assumptions of
Theorem A.2. Then #5(z) is polynomially bounded in closed substrips of
|Im z| < ¢, so the integral

T (*  plz—Xx) )
2—ia—iJ_m£'\ch2(7z.\'/a_)’ Imz| <¢ (A.24)
is well defined and yields a function that is analytic in [Im z| <¢. A suitable
shift of contour then shows that [(«;z) extends analytically to
[Im z| < ¢ +a/2 (cf. the proof of Theorem A.2). Consider now a function of
the form

Joaz
+J dw I(a; w), [Im z| < ¢ +a/2. (A.25)
0

k -
glazz) =Y &;—
j=0 J°

Clearly, one has

o0 =1~ _ \
. T~ i (z—x)
MU - <
g Nu; 2) /)k+2m2JAm({x B [Imz| <c. (A26)
Writing
no1 T
————=0,th—.x, (A27)
a L, u
ch® -
a

we may integrate by parts to deduce that the rhs equals p, + ¢, + f(u: ).
cl. (A.7). Therefore, g'*)(«; =) solves the k-fold derivative of the AAE (A21).
It then follows as before that the coefficients p,, ... p, in (A.25) can be
chosen such that g(«; =) solves (A.21), and g(«; =) is clearly minimal.

We close this appendix with a result that is of a less general character.
but which is quite relevant for the Barnes multiple zeta functions con-
sidered in Section 3. Let us begin by noting that when ¢(=) is analytic in
the half plane Im = <¢, then arbitrary solutions f(z) to (A.l) (in any
reasonable sense) satisfy the iterated equation

SV =fz=iN+ ) u)=¢ (:—%)—H/) <: wg—ict)

iu
+ 9 <:—?~i1’\/a>,
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with Imz<¢+ a2 The following theorem vields conditions on =)
(which are stronger than those of Theorem A2) guaranteeing that the rhs
comverges as V- o and gives rise to the minimal solution (@ =) (A7),

THrOREM 330 Asswme that ¢=) i analytic in Im = < ¢ and bounded in
S forall > 0. Assume thar (A0 holds 1re for all 10—+« .
and in addition assume

.

lim | dvdiv+in] =0, 1A29)

£ - ;

Then the minimal - solution fla: =) (A7) is analvtic for Imz<¢+q 2.
Moreover, fixing = with Im z < ¢ +ua 2. the series

, )
. It . \ 2
L i R (Y] ) (A30)

n =)
converges wid equualy fla: ).
Proof. Just as in the proof of Theorem A2 it follows that fia: =) is

analytic for Imz < ¢+« 2 and given by

1  x ) 7 )
| dudturitg) th =z = qu+ing)), (A3
i, | 0
a2y 2
where rpelm -+ (- 2.0 2) and fy €0— 7., ¢) Now we shift the contour
w=u-+it, ue k. to the contour

we=u+it, 1N+ 1) a. N e . A2
picking up the residues at w=z—ju 2. ..z~ it 2~ iNa. Thus we obtain
N ) . X
. - / Id 3

fla: )= L ¢ [ Iy g )
n=140 A =

+5- 6 dudlu+ity—itN + Dhavth =1z —tu +irg)). (4.33)

P T2 BT u

Next, we use (A.29) to deduce that the integral has limit 0 for N — .
Therefore the series converges. too. and its limit equals f(a: ). |
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